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The ant colony optimization (ACO) algorithm based on the probability density function is applied for the
retrieval of spherical particle size distribution (PSD). The spectral extinction data based on the Mie theory
and the Lambert–Beer Law served as input for estimating five commonly use monomodal PSDs, i.e., Rosin–
Rammer distribution, normal distribution, logarithmic normal distribution, modified beta distribution,
and Johnson’s SB distribution. The retrieval results show that the ACO algorithm has high feasibility and
reliability, thus providing a new method for the retrieval of PSD.
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Particle size has a direct effect on industrial processes,
product quality, production security, and energy con-
sumption. Thus, providing real-time measurements of
particle size distribution (PSD) and particle concentra-
tion is highly required in online monitoring of granularity
in the industry[1]. The retrieval of PSD with nonintrusive
optical measurement has shown large potential[2]. Nu-
merous light-scattering, particle-sizing techniques have
been widely used, including total light scattering, an-
gle light scattering, diffraction light scattering and dy-
namic light scattering[3]. The measurement range is from
nanometers to millimeters. Among these techniques,
light extinction measurement is probably the most ad-
vantageous because it does not need absolute calibration
and can be used for in situ monitoring of micron or sub-
micron particle systems with simple optical layout[4]. In
spectral extinction particle sizing, the PSD can be ob-
tained using the extinction data at multiple wavelengths.
The data processing of this technique solves the Fredholm
integral equation of the first kind, which is a classic ill-
posed problem. In fact, inversion methods to obtain use-
ful solutions to ill-posed problems are still active research
areas[5].

Generally, inversion methods can be divided into two
different categories: independent mode and dependent
mode. The independent mode does not need any as-
sumptions on the PSD in advance. The PSD is retrieved
by solving the discrete linear equation set. In the depen-
dent mode, certain assumptions have to be made on the
function form of the PSD beforehand, and the PSD is re-
trieved through some optimization algorithms[6]. Many
random search intelligent algorithms have been success-
fully employed to retrieve PSD problems, such as ar-
tificial neural networks[7], particle swarm optimization[2],
and genetic algorithms[8]. The ant colony optimization
(ACO) algorithm is a potential heuristic bionic evolution-
ary algorithm first proposed in 1 991 by Colorni et al[9]

based on the observation of the foraging behavior of real
ants. Since 1 996, the ACO algorithm has drawn much
attention worldwide, and its applications have expanded
rapidly to many fields. Numerous studies show that

ACO algorithm has positive feedback, parallelism, and
robustness[10].

However, to the best of our knowledge, few reports have
discussed the application of ACO algorithm to PSD prob-
lems. In this letter, we attempt to apply the ACO algo-
rithm in the retrieval of spherical PSD based on probabil-
ity density function (PDF). Firstly, three commonly used
monomodal PSDs, namely, Rosin–Rammer (R-R) func-
tion, normal (N-N) function, and logarithmic normal (L-
N) function, are retrieved in the dependent mode. Two
proper versatile functions, namely, modified beta (M-
β) function and Johnson’s SB (J-SB) function, are used
to retrieve the above three commonly used monomodal
PSDs.

The fundamental principle of retrieval based on the
spectral extinction technique is the Lambert–Beer Law.
When a parallel monochromatic light beam of intensity I0

travels through a suspension of particle system, scatter-
ing and absorption lead to the attenuation of the trans-
mitted light. When multiple scattering and interaction
processes are neglected, the transmitted light intensity I
with the incident wavelength λ can be calculated as[11]

ln
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I
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)

λ

= −3

2
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∫ Dmax
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D
f(D)dD,

(1)

where (I/I0)λ is the extinction value of the monochro-
matic light at λ, which is a known parameter in the re-
trieval process and can be obtained through experimen-
tal measurement. L is the optical path length; N is the
total number of particles; Dmin and Dmax are the lower
and upper integration limits, respectively; Qext(λ, m, D)
is the extinction efficiency of a single spherical particle,
which is a function of the particle diameter D; λ is the
wavelength; m is the relative refractive index that can
be calculated by using the exact Mie theory or estimated
by using appropriate approximation methods. f(D) is
the volume frequency distribution function, and also the
PSD function that we want to determine.

As social insects, ants live in colonies and their behav-
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iors are governed by the goal of colony survival rather
than the survival of individuals. In the process of looking
for food, ants leave chemical pheromones, an evaporable
material, on the ground so that other ants can smell it.
The concentration of the pheromone depends on the qual-
ity and quantity of the food source. Ants tend to choose
paths with high pheromone concentrations. The original
ACO algorithm is introduced to solve discrete domain
optimization problems. However, the retrieval of spher-
ical PDF is a continuous domain optimization problem.
Several types of ACO algorithms can be used for con-
tinuous domain optimization problems. The PDF-based
ACO algorithm is one of the most efficient. The logical
adaption would be to shift from the discrete probability
distribution to a continuous PDF[12].

The number of inversion parameters is set as Np, the
total number of the ants is set as Nm, and the amount of
the dominant ant ranks is set as Nn. The search space
[lowi, highi] of each inversion parameter needs to be esti-
mated before the optimization process. In each of the Np

construction steps, an ant chooses a value xi for exactly
one of the dimensions. To make this choice, an ant uses
a Gaussian kernel, which is a weighted superposition of
several Gaussian functions, as the PDF. The probability
density distribution of the ith inversion parameter of the
jth rank at iteration t is expressed as

Pi, j(t) = wj · fi, j(t), (2)

where wj denotes the probability of selecting the jth rank
determined by the pheromone value τj and fi, j(t) is the
probability density distribution which is a normal distri-
bution with expectation µi, j(t) and standard deviation
σi, j(t).

The probability of selecting the jth rank wj is defined
as

wj = τj

/
Nn∑

m=1

τm, (3)

where τj denotes the pheromone value of the jth rank,
and is defined as

τj =
1

αNn

√
2π

exp

[
− (j − 1)2

2α2N2
n

]
, (4)

where α is a positive parameter that determines the rel-
ative weight of the rank.

The probability density distribution of a normal distri-
bution fi, j(t) is defined as[13]

fi, j(t + 1) =
1√

2πσi, j(t)
exp

{
− [xi − µi, j(t)]

2

2σ2
i, j(t)

}
, (5)

where µi, j(t) is the retrieval value of the ith inversion
parameter with the jth rank at iteration t. σi, j(t) is the
standard deviation of the ith inversion parameter with
the jth rank at iteration t, and can be defined as

σi, j(t) = β

√√√√ 1

Nn

Nn∑

l=1

[
µi, l(t) − µi, j(t)

]2

, (6)

where β is a positive parameter that regulates the speed
of convergence. A higher value of β corresponds to a
lower convergence speed of the algorithm.

After the ant selects the value xi for all of the inversion
parameters, the estimated values can be calculated by
the direct model. Furthermore, the value of the objective
function, which relates the estimated values to the mea-
sured values, can be obtained. When all the ants select
the values, one iteration cycle completes. The dominant
ants, which have the smallest Nn values of the objective
function, are generated. Smaller values of the objective
function correspond to a higher rank. The expectation
µi, j(t) and the standard deviation σi, j(t) of the PDF
must be updated. The next iteration cycle does not start
unless the program matches one of the following three-
stop criteria:

(a) The value of the objective function is less than the
tolerance ε, Fobj < ε;

(b) The largest standard deviation is less than the set-
ting value ξ, max {σi, j(t)} < ξ;

(c) The number of the iteration reaches the user-
defined iteration limit Nc, iter(t) < Nc.

Many particle systems conform to two-parameter size
distributions, so the PSD is easier to retrieve in depen-
dent mode, where the most widely used distribution func-
tions are the R-R, N-N, and L-N functions. The mathe-
matical representations of their monomodal volume fre-
quency distributions are[2]

fR−R(D) =
k

D̄
×

(
D

D̄

)k−1

× exp

[
−

(
D

D̄

)k
]

, (7)
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2 (lnσ2
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2

]
,

(9)

where D̄, k, µN, σN, µL, and σL are the characteristic
parameters. The complex refraction index used in this
letter refers to practical situations. For instance, the
real part n and imaginary part k of the coal ash par-
ticle’s typical complex refractive index are in the ranges
of n ∈ [1.18, 1.92] and k ∈ [0.01, 1.13][14], respectively.
The complex refractive index is selected as 1.51 + 0.03i,
which is assumed to be independent of the wavelength
for the sake of simplicity.

The incident beam is set as two wavelengths λ =0.4,
0.8 µm or five wavelengths λ =0.4, 0.5, 0.6, 0.7, and
0.8 µm. The overall particle size measurement range is
limited from 0.1 to 10 µm in diameter, which is the opti-
mal measurement range in the spectral extinction particle
size technique. The true values of this distribution are
set as (D̄, k) = (3.0, 7.55), (µN, σN) = (3.6, 2.4), and
(µL, σL) = (3.0, 1.2). The PDF-based ACO algorithm
is used to retrieve these three spherical PSDs in the de-
pendent mode, and the system control parameters of the
ACO algorithm are shown in Table 1.

The retrieval of spherical PSDs is solved through the
minimization of the objective function, which is the sum
of the square residuals between the estimated and mea-
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sured transmittance ratios as

Fobj =

Nλ∑

i=1

{
[(I/I0)λ]est − [(I/I0)λ]mea

[(I/I0)λ]mea

}2

. (10)

Considering that the ACO algorithm is a stochastic op-
timization method, and all optimizations have certain
randomness, the ACO algorithm is repeated 100 times
for each of the three PSDs. The retrieval results are
shown in Figs. 1–3 and Table 2.

As shown in Table 2, the accuracy of the PDF-based
ACO algorithm is very high, even with a measurement
noise of 10%. The mean relative error and the standard
deviation of the inversion parameters increase when the
measurement noise increases. We can infer that the ACO
algorithm has high feasibility and reliability in the re-
trieval of the PSD problems. Figures 1–3 indicate that
the retrieval result of five wavelengths is better than
that of two wavelengths. The reason may be that two
wavelengths supply less transmitted light information,
leading to easier acquisition of multivalued retrieval re-
sults compared with using five wavelengths.

However, for many particle circumstances, the forms of
the distributions are usually unknown beforehand. Gen-
erally, no single distribution function can represent all

Table 1. Parameters of the PDF-based ACO
Algorithm for Different PSD Functions

Parameter Value

Np 2

Nm 30

Nn 5

Nc 1 000
ˆ

low, high
˜ ˆ

0, 150
˜

α 0.5

β 0.7

ε 10−6

ξ 10−6

Fig. 1. Retrieval results of the R-R function with (D̄, k) =
(3.0, 7.55) using two or five wavelengths under measurement
noise.

Fig. 2. Retrieval results of the N-N function with (µN, σN) =
(3.6, 2.4) using two or five wavelengths under measurement
noise.

Table 2. Retrieval Results of the Three PSD Functions with Two or Five Wavelengths

Function Two Wavelengths Five Wavelengths

R-R (D̄, k) = (3.0, 7.55)

Noise D̄ k D̄ k

0% 3.00±7.52×10−7 7.55±3.68×10−5 3.00±4.37×10−7 7.55±3.68×10−6

5% 3.00±4.01×10−2 7.84±1.57×100 3.00±2.50×10−2 7.47±4.67×10−1

10% 3.02±8.01×10−2 7.20±2.00×100 3.00±4.79×10−2 7.62±9.27×10−1

N-N (µN, σN) = (3.6, 2.4)

Noise µN σN µN σN

0% 3.60±1.18×10−6 2.40±3.78×10−6 3.60±5.86×10−7 2.40±1.83×10−6

5% 3.52±1.48×10−1 2.44±3.19×10−1 3.54±1.32×10−1 2.41±2.89×10−1

10% 3.28±5.40×10−1 2.46±5.41×10−1 3.36±4.32×10−1 2.38±5.34×10−1

L-N (µL, σL) = (3.0, 1.2)

Noise µL σL µL σL

0% 3.00±3.07×10−4 1.20±1.78×10−2 3.00±2.81×10−6 1.20±3.11×10−6

5% 3.01±3.44×10−2 1.22±9.12×10−2 3.00±2.92×10−2 1.20±2.73×10−2

10% 3.01±6.25×10−2 1.24±1.37×10−1 3.01±5.03×10−2 1.21±5.10×10−2

*The mean and standard deviation of the 100-time retrieval results are shown as a ± b in the table.
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PSDs encountered in reality, but several versatile func-
tions exist that can represent most of the commonly used
PSDs. Popplewell and Yu suggested that the M-β func-
tion and the J-SB function, respectively, can be used as
general functions to represent the monomodal PSDs. The
functions are described as[15]

fM−β(D)=
(D − Dmin)

αm(Dmax − D)m

∫ Dmax

Dmin

(D − Dmin)αm(Dmax − D)mdD
. (11)

fSB
(D)=

σS√
2π

× Dmax − Dmin

(D − Dmin)(Dmax − D)
× exp

{
−σ2

S

2

[
ln

(
D − Dmin

Dmax − D

)
− ln

(
M − Dmin

Dmax − M

)]2
}

, (12)

where α, m, σS, and M are the characteristic parame-
ters.

The M-β function and the J-SB function are used to
retrieve the monomodal R-R, N-N, and L-N PSDs with
five wavelengths. The system control parameters of the
PDF-based ACO algorithm are set to be the same as
those in Table 1. The reproducibility of the PDF-based
ACO algorithm for the original R-R distribution is given
in Table 3 and Fig. 4 with (D̄, k) = (2.0, 7.0). Mean-
while, the reproducibility of the original N-N distribution
is given in Table 4 and Fig. 5 with (µN, σN) = (5.0, 1.2),
and the original L-N distribution with (µL, σL) = (6.0,
1.15) in Table 5 and Fig. 6. To investigate the relia-
bility of this method, the inversion error εret is used to
characterize the quality of the retrieval results

εret =






100∑
i=1

[
fret(D̃i) − fori(D̃i)

]2

100∑
i=1

[
fori(D̃i)

]2






1/2

, (13)

where D̃i is the midpoint of the ith subinterval [D̃i, D̃i+1]

of the particle size range [Dmin, Dmax]; fori(D̃i) and

fret(D̃i) are the original and retrieval volume frequency
distribution, respectively, in the ith subinterval.

Fig. 3. Retrieval results of the L-N function with (µL, σL) =
(3.0, 1.2) using two or five wavelengths under measurement
noise.

Fig. 4. Reproducibility of the R-R function with (D̄, k) =
(2.0, 7.0) by the M-β function and the J-SB function under
absence of noise.

Table 3. Reproducibility of R-R with (D̄, k) = (2.0, 7.0) by the Two General Functions

Function Parameter
Noise 0% Noise 2% Noise 5%

Results εret Results εret Results εret

fR−R

D̄ 2.00000
0.00000

2.00051
0.00121

2.00251
0.00677

k 7.00000 7.00169 7.03319

fM−β

α 0.20959
0.20538

0.20955
0.20539

0.21078
0.19719

m 98.12641 98.50675 96.41465

fJ−SB

σS 3.86498
0.22220

3.97606
0.20750

3.95521
0.20819

M 1.92910 1.89676 1.90337

Table 4. Reproducibility of R-R with (µN, σN) = (5.0, 1.2) by the Two General Functions

Function Parameter
Noise 0% Noise 2% Noise 5%

Results εret Results εret Results εret

fN−N

µN 5.00000
0.00000

5.00442
0.00027

5.03173
0.00261

σN 1.20000 1.20110 1.22616

fM−β

α 1.15562
0.22255

1.20379
0.27268

1.30244
0.37392

m 6.59748 6.20693 6.14235

fJ−SB

σS 2.02292
0.00365

2.03383
0.00365

1.97946
0.04213

M 4.96741 4.96520 5.02525
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Table 5. Reproducibility of L-N with (µL, σL) = (6.0, 1.15) by the Two General Functions

Function Parameter
Noise 0% Noise 2% Noise 5%

Results εret Results εret Results εret

fL−N

µL 6.00000
0.00000

6.01081
0.00429

6.18539
0.16216

σL 1.15000 1.15820 1.16809

fM−β

α 1.69380
0.26166

1.84769
0.38978

1.71335
0.27884

m 9.34964 8.53924 8.89997

fJ−SB

σS 2.71091
0.13465

2.73354
0.13336

2.67170
0.16451

M 6.06498 6.06533 6.11148

Fig. 5. Reproducibility of the N-N function with (µN, σN) =
(5.0, 1.2) by the M-β function and the J-SB function under
2% noise.

Fig. 6. Reproducibility of the L-N function with (µL, σL) =
(6.0, 1.15) by the M-β function and the J-SB function under
5% noise.

As can be seen from Tables 3–5 and Figs. 4–6, a reason-
able agreement exists between the two general functions
and the original functions. If no noise is added to the
extinction data, the reproducibility by the original func-
tion is much better than that of the general functions.
The reproducibility by the original function deteriorates
sharply with the increase of the measurement noise. The
reproducibilities by the two general functions are rela-
tively more stable than those of the original function
within 5% noise.

In conclusion, the PDF-based ACO algorithm is firstly
applied to the retrieval of spherical PSD, thereby pro-
viding a new method. By retrieving the PSD in the
dependent mode, the inversed parameters can be es-
timated accurately even with noisy data by the ACO
algorithm. This algorithm is demonstrated to have high

feasibility and reliability, establishing its potential to be
implemented to solve various PSD problems. The exis-
tence of such a general PSD function is validated through
the reproducibility of the most widely used monomodal
PSDs, in which the M-β function and the J-SB function
are used as the assumed types of the PSDs. Our future
directions are twofold. On one hand, we would like to
look for other general functions; on the other hand, we
want to further improve the performance of the ACO
methodology, so that we can apply it to other bimodal,
multimodal, and mixed PSD problems in independent
mode.
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